
Introduction

One of the basic parameters of lake water is 
temperature [1, 2]. The willingness to determine the 
thermal structure theoretically applicable to the biggest 
variety of lakes drives professionals to create quite 
complex software packages taking into account all 
possible internal and external factors that determine 
lake water temperature changes [3-5]. Mathematically, 
such software packages comprise 9-15 nonlinear 

differential equations with partial derivatives and border 
and initial conditions of the same amount. The model 
has about 10 free parameters, which in principle give a 
good coincidence with experimental data (see [4-6]).

Determining the lake thermal structure belongs to 
the classical limnology area and is under investigation 
up to now (see, e.g., [28, 29] and the references therein). 
Continuous thermodynamic, hydrophysical and other 
processes allow us to group lakes under selected criteria. 
Usually, they are classified according to the origin  
of water sources, water chemical structure, slope,  
water quality, water level, water circulation intensity, 
etc. [7-10]. Many works have recently analyzed the 
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issues related to lake chemical pollution, thermal and 
other processes in lake bottom sediments.

There is a lack of information on the modelling of 
the thermal regime of water. The analysis of lake water 
thermodynamic thermal regimes in different seasons is 
relevant. A lake’s thermal regime is a key parameter in 
the physics of water system processes, which in its turn 
is very important for the course of biotic and abiotic 
processes occurring in lakes. An increased temperature 
accelerates the lake biogeochemical and water cycles.

The purpose of this article is to propose a simple 
one-dimensional mathematical model of the lake vertical 
thermal structure while applying the model to explain 
the thermal structure of a certain lake (the Tapeliai) in 
order to define the theoretical values and depth of its 
thermolimnion and to compare them with experimental 
data. 

Materials and Methods

Object of the Study

Lake Tapeliai (54o46’28”N, 25o26’45”E) is located 
17 km northeast of Vilnius, Lithuania, in a wooded 
region at 136.1 m a.s.l. (Fig. 1). It is the initial water 
body in a lake chain connected by a brook. The lake is 
eutrophic. Its banks are rushgrown with a marshy zone 
formed at a brook outflow area.

The basin of the lake is of a glacier origin and 
consists of four parts: 1) the shallow southern terrace 

(depth 4-5 m); 2) the central deeper part of the lake 
(depth 7-9 m); 3) the northern terrace with a constantly 
changing bottom (the depth varies from 1.5 m to 6 m); 
and 4) a small basement terrace on the west side of the 
lake (depth 5-6 m). It has also been found that along 
with the watershed, the lake is fed by bottom-feeding 
sources located in three different zones: a) near the 
western coast of the southern terraces at a depth of 
about 4-4.5 m; b) in the southwestern zone of the central 
part of the lake area; c) at the southern edge of the lake 
near the old drainage channel which previously 
combined the Tapeliai and the Lydekinis (Red) lakes. 
They are located in distinct areas marked in Fig. 1 by 
the symbol “ ”.

During flood periods (in spring and after long-term 
rains), the lake is additionally fed (sometimes for some 
months) by a temporal discharge with colored water 
(shown by a dotted arrow, Fig. 1) from a swamp. 

The surface area of the lake is equal to ~0.131 km2, 
its drainage basin is ~0.7 km2 [11], the mean depth 
~3.3 m, the water retention time ~1 year. The typical 
amount of dry substances in the surface layer of the 
sapropelic-type sediments in the lake mainly varies 
in the range of 20-36 g/L. The organic content of the 
sediments, determined as a loss on ignition, is shown to 
increase with sediment depth (down to 30-35 cm) and 
varies in the range of 50-70 % (the southern platform). 
The thickness of the sediment layer measured in the 
northern terrace increases with the bottom depth. It 
varies from ~1.5 m near the northern rush-grown bank 
up to ~4 m at a depth of 6 m. The concentrations of total 
dissolved solids (TDS) in the lake water, determined on 
evaporation (dry deposits), are mainly in the range of  
180-220 mg/L.

Parameterization

The vertical profiles of the water temperature were 
episodically measured in a lake water column from July 
2006 to February 2011, with a pause from August 2007 
until March 2008. The aim of the study was to estimate 
lake mixing conditions and the seasonal variations of 
the lake vertical structure. The measurements of the 
surface temperature were carried out at a depth of 5 cm 
in all seasons of the year. 

The sediment samples were analyzed for 137Cs, 
using a SILENA γ-spectrometric system with an HPGe 
detector (42% relative efficiency, resolution 1.8 keV/1.33 
MeV) according to the gamma line at 661.62 keV of 
137mBa (a daughter product of 137Cs). Measurements 
were carried out in standard geometry and at known 
efficiencies according to the densities of samples [11-12].

A portable ProfiLine Multi 197i (WTW) device with 
10 m cables allowed for carrying out these measurements 
down to the lake bottom. During a warm period, 
measurements were conducted from an inflatable boat 
stabilized by an anchor. In winter, holes were drilled 
in the ice. As a rule, measurements were carried out at  
the deepest site of the central part of the lake. 

Fig. 1. Scheme of Lake Tapeliai: (♦) sampling sites of sediment 
cores, (◊) water sampling sites, ( ) location of bottom feeding 
sources, (+) old channel.
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The Thermodepth Model

It can be shown that from the equation of heat flux 
balance flows, the change of temperature T at the lake’s 
depth h must satisfy the differential equation and the 
initial conditions:

     

(1)

where T = T(h) is the temperature dependent on the 
depth, dT/dh the derivative of temperature with respect 
to depth, a is the constant inversely proportional to the 
depth of the lake ([a] = m–1), Tc is the critical temperature 
([T] = ºC) also constant independent by the depth h 
value ([h] = m), b is the constant gradient of temperature 
([b] = ºC), and v is the nonlinearity parameter: positive, 
real, not necessarily an integer. The depth of the lake 
changes from h = 0 on the surface to h = hb at the bottom. 
T0  is the temperature of the surface water of the lake. 

The differential equation along with the initial 
conditions (1) make up a mathematical model of the 
temperature dependence on the lake depth, which is 
called the thermodepth model.

The differential equation of model (1) depends on 
three constant dimensional parameters, a, b, Tc, and 
one dimensionless parameter v. Their consistency is 
relative: it may depend (and indeed depends) on thermal 
conductivity, density, and even on time; it is important 
that the parameters are independent on depth h and 
temperature T.

Mathematically, the differential equation of model 
(1) is a simple first-order non-homogeneous, nonlinear, 
ordinary differential equation. In the applications, a 
homogeneous case of these differential equations with 
a constant temperature gradient b = 0 is well known. 
In the case of v = 1, this is the well-known logistic 
or Pierre-François Verhulst equation [13, 14]. In 
general, when v ≠ 1, this equation turns into Richard’s 
equation [15], in ecology more commonly known as 
the θ - model equation (see, for example, [16] and the 
references therein). The mathematical meaning of our 
thermodepth model is more complicated because it is 
non-homogeneous.

The fact that nonlinear mathematical models are 
necessary to interpret the thermodepth properties of a 
lake should not be astonishing. It suffices to recall that 
the equations of classical hydrodynamics are nonlinear. 
In addition, various properties of liquids can also be 
interpreted only by nonlinear phenomena [17]. 

The Dimensionless Form

The usual way to find the solution of a mathematical 
model (1) is to use the numerical methods of solution. 
As we have already mentioned, the differential equation 
of the thermodepth model depends on the parameters, 

therefore, it is necessary to determine the dependence 
of the solution result on the model parameters. Although 
the parameters are independent, sometimes the solution 
depends on a combination of them, which effectively 
reduces the number of parameters.

One way to reduce the number of independent 
parameters is the reduction of the model to the 
dimensionless form. Let us introduce values:

 
,            (2)

where θ is the dimensionless temperature, x is the 
dimensionless depth, and γ is constant dimensionless 
temperature gradient. After the change of variables (2), 
the mathematical thermodepth model (1) acquires a 
dimensionless form:

 
.         (3)

The results given by the differential equation of 
thermodepth model (1) depend on four parameters,  
a, b, Tc and v, but dimensionless differential equation 
of the thermodepth model (3) depends only on two 
parameters, γ and v, and  they are both dimensionless.

The Thermodepth Portrait

Considering the thermodepth model (1) as 
evolutionary, we can adapt the dynamical system 
methods to its mathematical analysis [18].

First, we determine the stationary thermodepth model 
solutions. For this purpose, we show the temperature 
gradient’s dT/dh dependence on the temperature, i.e., the 
thermodepth model (1) portrait (see Fig. 2).

As follows from the experimental measurements, the 
temperature of the deep water layers practically does 
not depend on the depth, whereas the temperature of the 
upper water layers under the influence of solar radiation 
depends on the depth very essentially. This means that 
the temperature gradient in the deep water layers almost 
does not change: dT/dh ≈ 0. Dependence T(h) with this 

Fig. 2. Thermodepth model portrait.
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property is called stationary solution. It is convenient to 
turn to the dimensionless form (3) of the thermodepth 
model.

The solution of the stationary thermodepth model 
equation (1) when the temperature gradient does not 
change dθ/dx = 0, corresponds to the solution of the 
equation

0)1( =+− γθθ ν
 .                   (4)

Depending on the parameter γ value, in the interval 
0 ≤ θ ≤ 1, equation (4) has two solutions for (0 < γ < γc),  
one solution at γ = γc or no solution for (γ < γc), where 
γc is the critical value of the γ parameter when line γ 
touches the curve y(θ) = θ(θv – 1) at a single minimum 
point, when θ = (1 + v)–1/v:

 

,                     (5)

and depends only on the dimensionless value of the 
parameter of nonlinearity v. Recalling the definition of 
the γ parameter (2), we obtain the critical value of the 
constant temperature gradient: 

 

.                (6)

Thus, in the portrait of the thermodepth model  
(Fig. 2), depending on the value of the b parameter 
we have two critical temperatures T1

* and T2
* when 

0 < b < bc, one critical temperature T1
* = T2

* = Tt
* when 

b = bc, and finally, if b < bc, the thermodepth model (1) 
does not have any stationary critical temperature.

Since the extreme condition T /h = 0 in the 
dimensionless case corresponds to the condition  
θ /x = 0, it results in two critical temperatures T1

* and T2
* 

in the thermodepth model (1). Their values are related to 
the model’s critical temperature Tc. In the case when the 
nonlinearity parameter v = 1, the critical temperatures 
T1

* and T2
* are expressed by a critical temperature 

analytically:

. (7)

For applications it is convenient to use the 
expressions from the formulas (7):

 .   (8)

The theoretical temperature dependence on the depth 
T(h), obtained from the thermodepth model (1), varies 
in the field of critical temperatures in different ways.  
As depth h increases, the temperature dependence T(h) 

approaches the critical temperature T1
* and moves to 

exceed the critical temperature T2
*. This is related to the 

stability of the T(h) dependence. 
As follows from the general statements of the theory 

of ordinary differential equations (see, for example, 
[19]), it is possible to show that the critical temperature 
T1

* is stable and T2
* is not. The critical temperature T1

* 
is marked as full-flow and the unstable T2

* as hollow 
points in the termodepth model (1) portrait. The point 
of minimum Tt, marked with a small hollow ball, 
corresponds to the temperature of the thermocline, 
which has a special part in this publication. The arrows 
indicate the corresponding variation of T(h) with the 
increasing depth.

Termodepth Model Solutions

In general, for any parameter v  the solution of the 
thermodepth model (1) is obtained using only numerical 
computational methods. However, when v = 1 in the 
case of non-homogeneous Verhulst equation, there is a 
precise analytical solution [20]:

, (9a)

 
.      (9b)

When the nonlinearity parameter v ≠ 1, a good 
approach is an analytical solution of Richard’s equation, 
proposed in [21]:

 
(10)

These two analytical solutions (9) and (10) allow us 
to avoid complicated numerical methods and go straight 
to the approximation of experimental data.

In the case of different initial conditions, the 
general form of the solution is shown in Fig. 3. The 
properties of the solutions indicate that the first critical 
temperature T1

* correlates with the maximum density 
water temperature Tcr = 3.984 ºC (39.16 ºF), when the 
water density becomes the highest: ρcr = 999.972 kg/m3  
[22], and T2

* corresponds to the asymptotic temperature 
of the water surface of the lake in the warm season. An 
additional “richer” structure occurs due to additional 
layering phenomena (see, for example, [23] and 
references therein).

As seen in the portrait of the thermodepth model 
(Fig. 2), a stable temperature is marked with appropriate 
beads at the edge of the graph: full-flow for temperature 
T1

* and hollow for temperature T2
*. The position of 

the thermocline is depicted at depth ht, with a hollow 
ball. Two seasons are marked in the graph: the summer 
“s” is the central vertical area of the graph from T1

* 
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to T2
*, and the winter “w” is the left vertical part of 

the graph from T = 1 to T1
*. In summer, the surface 

temperature is higher than the bottom temperature of the 
lake: T0>Tb, while the winter is the opposite situation: 
T0<Tb.

Approximation of Experimental Results

Complex bathymetric measurements of Lake 
Tapeliai associated with sediments have been published 
[24]. In the present work, we will use at the same 
time our obtained experimental results concerning the 
temperature dependence on depth.

The data of temperature measurements made on 
May 31 represents Fig. 4. Seeking to receive the best 
possible correspondence with the experiment data, three 
areas of measurement data were separated: 1) the basic 
data sequence, 2) the second epilimnion [25], and 3) the 
sediments area. The total approximation function T(h)  
is represented as the sum of three functions:

321)( TTThT ++=  ,              (11)

where Ti = Ti(h), i = 1, 2, 3, and the approximations 
are performed in each area separately. Using the 
mathematical package Mathematica 4.0 [License  
L2990-7548] or any other package which is able to do 
it, after approximations we will get the corresponding 
coefficient values.

In our case, the three functions look like this:

. (12a)

. (12b)

.         (12c)

With a small amount of data in the area of the 
secondary thermocline of the epilimnion and sediments, 
these data were approximated by selecting the nonlinear 
parameter value v = 1.

Our research of dependence consists of only three 
areas. However, according to our and other researchers’ 
results, the thermodepth addiction can be much more 
complicated (see, e.g., [2-6]). The subtlety of the T(h)   
dependence may be explained by second thermoclines 
(see, e.g., [25]). In our model, this would mean a greater 
number of domains and approximation functions.

In the approximation of experimental data, we found 
the critical temperatures T1

* and T2
*, the constant values  

a and the non-linearity parameter v. The thermodepth 
portrait can be used to determine the remaining two 
parameters: Tc = 10.19 ºC and b = 5.255·10–2 ºC/m. 
Formula (6) allows to determine the critical value of  
the constant temperature gradient bc = 7.994·10–2 ºC/m. 
As it should be, there are two critical temperatures 
T1

* and T2
* when b < bc. Correspondingly, in the 

dimensionless case, the critical value of the γc parameter 
(5) is γc = 0.339207, whereas when the γ value used 

Fig. 3. General dependence of the vertical thermal regime 
T(h) determined as the solution of the theoretical thermodepth 
model.

Fig. 4. Approximation of the vertical thermal regime T(h) of 
experimental data; the thermocline position is marked with a 
circle.
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in the model is determined by formula (2), there is  
γ = 0.22299, which also confirms the condition γ < γc.

The maximum deviation of the theoretical 
dependence from the experimental values is at the 
depth of about 4 m at a temperature of 8 ºC. The 
numerical depth and temperature deviations allow 
for estimating the approximation inaccuracy, which 
is about 2.5 %. Correspondingly, this means that the 
model’s correctness is about 97.5 %, which indicates 
the excellent coincidence between the model and the 
experimental data.

Position of the Thermocline

Prof. R. Wetzel in his fundamental work [3] writes: 
“The term thermocline has been defined variously, 
but correctly refers to the plane of maximum rate 
of decrease of temperature with respect to depth. 
An extensive discussion of these terms and their 
conceptual basis is given by Hutchinson [26, 27]”. If the 
mathematical approximation of the thermal structure (9) 
or (10) was known at that time, it could be possible to 
avoid the inadequacies of the thermocline positioning 
and hot discussions.

With the theoretical approximation formulas (9)  
and (10), it is not difficult to obtain the expression of  
the thermocline position Tt(h) through the parameters 
of the thermodepth model. Indeed, the thermocline 
is defined as the inflection point of temperature 
dependence, which must satisfy the mathematical 
condition T'(h) = 0. By applying this condition to 
solution (10), we obtain:

 
,             (13a)

 

. (13b)

The temperature and depth of the thermocline are 
determined by formulas (13), which can be compared 
with the experimental data. After approximating 
our measured experimental data, we get three basic 
parameters: a = 1.16721 m–1, v = 1.60418, Tc = 16.568 ºC 
and three additional: a0 = 2.9500·10–3, T0 = 16.546 ºC,
T1

* = 5.0497 ºC. Using their meanings, we obtain the 
thermocline depth and temperature values:

 .    (14)

According to the comparison of experimental data 
and the theoretical approximation curve, the position of 
the thermocline is determined with sufficient accuracy 
(see Fig. 4). 

It is interesting to trace the relationship between the 
temperature of the water surface T0 and the thermocline 
Tt. The surface temperature T0 has a higher oscillation 

amplitude than the temperature of the thermocline Tt. 
If the surface temperature varies from T0 = 0 ºC in winter 
to T0 = 24.3 ºC in summer, then the temperature of the 
thermocline is changing from Tt = 3÷4 ºC in winter to 
Tt = 13.3 ºC in summer. As can be expected, their change 
takes place in a coherent way: the surface layers give 
their heat to the lower layers during the summer, and  
the inverse process takes place in winter (see Fig. 5). 
The Pearson temperature correlation coefficient value is 
r = 0.9916.

As shown in Fig. 6, the position of the thermocline 
monotonically increases from 2.9 m at the end of April 
to 9.10 m in the second half of November and slightly 
decreases to 8.50 m at the end of March. The biggest 
changes of the thermocline temperature (from 8.50 m to 
2.90 m) take place in a rather short period – from March 
to the end of April.

In places where the two graphs cross over, the 
temperatures of the thermocline and sediment are the 
same. As shown in Fig. 6, this happens twice a year: 
around mid-March and close to November 18. This is 
an experimental confirmation that Lake Tapeliai is 
definitely dimictic.

Fig. 6. Depth change over the year of water thermocline ht and of 
sediment hS of Lake Tapeliai.

Fig. 5. Temperature change of Lake Tapeliai water surface T0 and 
thermocline Tt over the year.
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The depth of the sediments changes much less:  
from 9.10 m in October-November to 8.33 m in January-
February.

Discussion

According to our measurements, the sediment 
layer forms a separate, important, independent part 
of Lake Tapeliai. We believe that lakes with sediment 
layers also are another special subclass of lakes. Eight 
lake models of different complexity were used, forced  
by identical meteorological variables and model 
parameters unified as far as possible given different 
formulations of processes. All models generally 
captured diurnal and seasonal variability of lake surface 
temperature reasonably well. However, some models 
were incapable of realistically reproducing temperature 
stratification in summer [30]. The effect of heat flux to 
bottom sediments can become significant for bottom 
temperatures. It also has a profound influence on the 
surface temperatures in autumn due to convective 
mixing, but not in summer when lake stratification is 
stable. Thus, neglecting sediments causes a summer-
autumn temperature difference in models lacking an 
explicit treating of sediments.

As follows from our measurements and the data 
of other authors, in sedimentary layers the density of 
suspended matter significantly differs from the density 
of water. In [31], a bulk density formula of lake water 
ρ(T,C) is proposed:

 
,      (15)

where C (kg/m3) is a suspended sediment density, 
ρs (kg/m3) is the density of suspended particles, and  
ρ(T) (kg/m3) is the pure water density at temperature T 
(ºC). This expression is very useful and can be used to 
simulate bottom processes. The authors used a particle 
density of 2730 kg/m3, a value reported for sediment 
sampled in a proglacial lake in Nepal, since no data were 
available for the studied lakes.

Obtaining the thermal structure of lakes from the 
air is one of the promising and useful experimental 
techniques [32]. Remote observations of water 
temperature from aerial platforms are attractive: 
such platforms do not require shoreline access; they  
can be quickly and easily deployed and redeployed 
to facilitate repeated sampling and can rapidly 
move between target locations, allowing multiple 
measurements to be made during a single flight. 
However, they are also subject to well-known limitations, 
including payload, operability and a trade-off between 
the extent and density over which measurements can 
be made within restricted flight times. Despite some 
difficulties, we are sure that this technique has a great 
future.

Bathymetric measurements are usually approximated 
using complex mathematical packages that take into 
account a lot of external phenomena – not only vertical 
and horizontal, but also three-dimensional, for example, 
vortex or convective. Accordingly, mathematical models 
consist of differential partial derivatives of nonlinear 
equations with a multitude of model parameters [6]. 
We have succeeded in proposing a straightforward  
one-dimensional thermodepth model that effectively 
depends on two parameters: the nonlinearity parameter 
v (see (1)) and the constant dimensionless temperature 
gradient γ (see (2) and (3)). The maximum difference 
between experimental and theoretical data does 
not exceed 2.5 %. This may be associated with an 
abnormally large nonlinearity v.

Conclusions

Temperature value and distribution are of key 
importance for the course of biotic and abiotic processes 
occurring in rivers and lakes. Our research conclusions 
are as follows:
1. The isothermal temperature throughout the whole 

depth of the lake T = 5.2 ºC settles around mid-March 
and close to November 18.

2. The secondary epilimnion structure fluctuating  
from 20÷40 cm in March-April to 90÷120 cm in 
June-September was detected in March and lasted up 
to mid-October. No secondary epilimnion structure 
was observed in the period from October to February.

3. Based on the maximal differences between the 
experimental values and the prediction of our 
proposed theoretical model, the correctness of the 
model is estimated. The proposed thermodepth  
model of the lake with the accuracy of 97.5 % 
describes Lake Tapeliai temperature dependence on 
its depth.

4. The changes of the thermocline temperature are 
clearly related to the changes of the lake surface 
temperature (Figs 4 and 5). This is confirmed by the 
relatively high Pearson correlation coefficient value  
r = 0.992.

5. In our thermodepth model, the position of the 
thermocline can be determined theoretically. 
The model allows us to express the thernocline’s 
position through the thermodepth model parameters 
(see formula (10)). The obtained theoretical values  
Tt = 11.39 ºC and ht = 3.36 m are finely matching the 
experimental values (Fig. 4). 

6. The sediment layer forms a separate, important, 
independent part of Lake Tapeliai.
We support numerous authors who devote special 

attention to sediments and even suggest distinguishing 
a separate group of lakes with sediments (see, e.g., [24] 
and references there).

Considering that the experimental approximation 
of the data of Lake Tapeliai was quite successful, there 
is a natural question about the limits of the proposed 
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thermodepth model. A minimum of three important 
remarks should be made here:
a) Setting the limits is more complex than designing the 

model,
b) Our thermodepth model is not set against 3D models,
c) As shown by the long-term research results of other 

authors (see, e.g., [1, 2]), our thermodepth model 
could be applied to them, but this will become the 
object of further research.
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